February 21, 2008

WHAT IS FULL LUNAR ECLIPSE ?/ APA ITU GERHANA BULAN PENUH?




Introduction

A total eclipse of the Moon occurs during the night of Wednesday, February 20/21, 2008. The entire event is visible from South America and most of North America (on Feb. 20) as well as Western Europe, Africa, and western Asia (on Feb. 21). During a total lunar eclipse, the Moon's disk can take on a dramatically colorful appearance from bright orange to blood red to dark brown and (rarely) very dark gray.

An eclipse of the Moon can only take place at Full Moon, and only if the Moon passes through some portion of Earth's shadow. The shadow is actually composed of two cone-shaped parts, one nested inside the other. The outer shadow or penumbra is a zone where Earth blocks some (but not all) of the Sun's rays. In contrast, the inner shadow or umbra is a region where Earth blocks all direct sunlight from reaching the Moon.

If only part of the Moon passes through the umbra, a partial eclipse is seen. However, if the entire Moon passes through the umbral shadow, then a total eclipse of the Moon occurs. For more information on how, what, why, where and when of lunar eclipses, see the special web page lunar eclipses for beginners

Some people may be puzzled that the Moon's motion is from west to east (right to left) in these diagrams, instead of its daily east to west (left to right) motion in the sky. However, the Moon actually moves WEST to EAST (right to left in the Northern Hemisphere) with respect to the Earth's shadow and the stars.

Wonderful Totality

At the instant of mid-totality (03:37 GMT), the Moon will lie in the zenith for observers in French Guiana. At this time, the umbral eclipse magnitude peaks at 1.1062.

From the diagram above, it is clear that the northern (top) edge of the Moon will dip much deeper into the Earth's shadow than will the southern (bottom) edge. Since the Earth's umbral shadow is darker in the center than at the edge, the Moon's appearance will likely change dramatically with time. A large variation in shadow brightness can be expected and observers are encouraged to estimate the Danjon value at different times during totality ( Danjon Brightness Scale). Note that it may also be necessary to assign different Danjon values to different portions of the Moon at different times.

This could be an excellent opportunity for budding astronomers and students to test their observing skills. Try recording your estimates of the Moon's brightness every ten minutes during totality using the Danjon Scale. Compare your results with your companions and classmates and discover how the Moon's appearance changes during the total eclipse. The brightness of the totally eclipsed Moon is very sensitive to the presence of volcanic dust in Earth's atmosphere. As part of a continuing research project, Dr. Richard Keen has been using reports of lunar eclipse brightnesses to calculate a history of optical thicknesses of volcanic dust layers (see: What Will 2004's Lunar Eclipses Look Like?). If you'd like to help Dr. Keen by making eclipse observations, you can contact him at Richard.Keen@Colorado.EDU.

The amount of dust and sulfur dioxide in Earth's atmosphere also has an effect on the diameter of the umbral shadow. Amateur astronomers with telescopes can make careful timings of when some of the Moon's major craters enter or exit the umbra. Such observations are valuable in determining the enlargement of Earth's shadow. A table of crater predictions identifies twenty well-defined craters useful for this purpose. For more information, see: Crater Timings During Lunar Eclipses.

An eclipse of the Moon also presents a tempting subject to photograph. Since the Moon appears quite small in the sky, you'll need a fairly powerful telephoto lens (400 mm or more) or even a small telescope to attach to your camera. A typical ISO 400 speed (either digital or film) is a good choice. For more information on equipment, film, recommended exposures and additional tips, see lunar eclipse photography.

Unlike solar eclipses, lunar eclipses are completely safe to watch. Protective filters are not necessary and neither is a telescope. A lunar eclipse can be observed with nothing more than the naked eye. However, a pair of binoculars will magnify the view and make the red coloration brighter and easier to see. A standard pair of 7x35 or 7x50 binoculars is sufficient.

During the eclipse, the Moon will be in Leo. Saturn and bright star Regulus are only 3 degrees east and west, respectively, of the Moon. Geminii, Orion, Taurus and other winter constellations will occupy the south and western sky for North American eclipse watchers. viewers.

Although total eclipses of the Moon are of limited scientific value, they are remarkably beautiful events which do not require expensive equipment. They help to cultivate interest in science and astronomy in children and to provide a unique learning opportunity for families, students and teachers. To the nature lover and naturalist, the lunar eclipse can be appreciated and celebrated as an event which vividly illustrates our place among the planets in the solar system. The three dimensional reality of our universe comes alive in a graceful celestial ballet as the Moon swings through the Earth's shadow. Hope for clear skies, dress warmly and enjoy the show!


Eclipse Frequency and Future Eclipses


During the five millennium period from 2000 BC through AD 3000, there are 7,718 eclipses[1] of the Moon (including both partial and total eclipses). From 0 to 3 lunar eclipses (partial or total) occur each year. The last time three total lunar eclipses occurred in one calendar year was in 1982. On average, partial eclipses slightly outnumber total eclipses by 7 to 6[2].

[1] Only eclipses where the Moon passes through Earth's umbral shadow are included in these values. A minor type of eclipse is the penumbral eclipse which occurs when the Moon passes through the Earth's faint penumbral shadow. Penumbral eclipses are rarely discernible to the naked eye and are of lesser importance than umbral eclipses.

[2] Penumbral eclipses are excluded from these statistics.

Web Resources

No comments: